
Whetting the Appetite: Make a Wiki in 20
Minutes

How does TurboGears2 help you get development done quickly? We’ll show
you by developing a simple wiki application that should take you no more than
20 minutes to complete. We’re going to do this without explaining the steps in
detail (that is what this book is for, after all). As a result, you’ll see how easily
you can make your own web applications once you are up to speed on what
TurboGears2 offers.

If you’re not familiar with the concept of a wiki you might want to check out the
Wikipedia entry. Basically, a wiki is an easily-editable collaborative web
content system that makes it trivial to link to pages and create new pages. Like
other wiki systems, we are going to use CamelCase words to designate links
to pages.

If you have trouble with this tutorial ask for help on the TurboGears discussion
list, or on the IRC channel #turbogears. We’re a friendly bunch and, depending
what time of day you post, you’ll get your answer in a few minutes to a few
hours. If you search the mailing list or the web in general you’ll probably get
your answer even faster. Please don’t post your problem reports as
comments on this or any of the following pages of the tutorial. Comments
are for suggestions for improvement of the docs, not for seeking support.

If you want to see the final version you can download a copy of the wiki code.

Setup

This tutorial takes for granted that you have a working Python environment
with Python2.6 or Python2.7, with pip installed and you have a working
browser to look at the web application you are developing.

This tutorial doesn’t cover Python at all. Check the Python
Documentation page for more coverage of Python.

Setting up our Environment

If it is your first TurboGears2 project you need to create an environment and
install the TurboGears2 web framework to make the development commands
available.

http://en.wikipedia.org/wiki/Wiki
http://en.wikipedia.org/wiki/Wiki
http://groups.google.com/group/turbogears
http://groups.google.com/group/turbogears
http://turbogears.readthedocs.org/en/latest/_static/wiki20.zip
http://www.pip-installer.org/en/latest/
http://www.python.org/doc
http://www.python.org/doc

Creating the Environment

First we are going to create a Virtual Environment where to install the
framework, this helps keeping our system clean by not installing the packages
system-wide. To do so we need to install thevirtualenv package:

$ pip install virtualenv

Now the virtualenv command should be available and we can create and
activate a virtual environment for our TurboGears2 project:

$ virtualenv tg22env

$. tg22env/bin/activate

If our environment got successfully created and activated we should end up
with a prompt that looks like:

(tg22env)$

Installing TurboGears2

TurboGears2 can be quickly installed by installing the TurboGears2
development tools, those will install TurboGears2 itself and a bunch of
commands useful when developing TurboGears applications:

(tg22env)$ pip install -i http://tg.gy/current tg.devtools

Note

The -i http://tg.gy/current option is used to make sure that we install
TurboGears2 latest version and its dependencies at the right version,
replacing it, for example, with 220 or 215 will install the 2.2 and 2.1.5
version respectively. TurboGears2 package doesn’t usually enforce
dependencies version to make possible for developers to upgrade
dependencies if they need a bugfix or new features. It is suggested to
always use the -i option to avoid installing incompatible packages.

Quickstart

TurboGears2 provides a suite of tools for working with projects by adding
several commands to the Python command line tool paster. A few will be
touched upon in this tutorial. (Check the../appendices/commandline for a full
listing.) The first tool you’ll need is quickstart, which initializes a TurboGears
project. Go to a command line window and run the following command:

(tg22env)$ paster quickstart

You’ll be prompted for the name of the project, and the name of the python
package. Here’s what our choices for this tutorial look like:

(tg22env)$ paster quickstart

Enter project name: Wiki 20

Enter package name [wiki20]:

Would you prefer to use an alternative template system? (m=mako, j=jinja, k=kajiki,

n=no [default]):

Do you need authentication and authorization in this project? ([yes]/no):

This will create a project called wiki20 with the default template engine and
with authentication. TurboGears2 projects usually share a common structure,
which should look like:

wiki20

├── __init__.py

├── config <-- Where project setup and configuration relies

├── controllers <-- All the project controllers, the logic of our web

application

├── i18n <-- Translation files for the languages supported

├── lib <-- Utility python functions and classes

├── model <-- Database models

├── public <-- Static files like CSS, javascript and images

├── templates <-- Templates exposed by our controllers.

├── tests <-- Tests

└── websetup <-- Functions to execute at application setup. Like creating

tables, a standard user and so on.

Note

We recommend you use the names given here: this documentation looks
for files in directories based on these names.

You need to update the dependencies in the file Wiki-20/setup.py. Look for a
list named install_requires and append the docutils entry at the end.
TurboGears2 does not require docutils, but the wiki we are building does.

Your install_requires should end up looking like:

install_requires=[

 "TurboGears2 >= 2.2.0",

 "Genshi",

 "zope.sqlalchemy >= 0.4",

 "repoze.tm2 >= 1.0a5",

 "sqlalchemy",

 "sqlalchemy-migrate",

 "repoze.who",

 "repoze.who-friendlyform >= 1.0.4",

 "tgext.admin >= 0.5.1",

 "repoze.who.plugins.sa",

 "tw2.forms",

 "docutils"

]

Now to be able to run the project you will need to install it and its dependencies.
This can be quickly achieved by running from inside the Wiki-20 directory:

$ pip install -e .

Note

If you skip the pip install -e . command you might end up with an
error that looks like: pkg_resources.DistributionNotFound: tw2.forms: Not
Found for: wiki20 (did you run python setup.py develop?) This is because
some of the dependencies your project depend on the options you choose
while quickstarting it.

You should now be able to start the newly create project with
the paster serve command:

(tg22env)$ paster serve development.ini --reload

Starting subprocess with file monitor

Starting server in PID 32797.

serving on http://127.0.0.1:8080

Note

The –reload option makes the server restart whenever a file is changed,
this greatly speeds up the development process by avoiding to manually
restart the server whenever we need to try our changes.

Pointing your browser to http://127.0.0.1:8080/ should open up the
TurboGears2 welcome page. By default newly quickstarted projects provide a
bunch of pages to guide the user through some of the foundations of
TurboGears2 web applications.

Controller And View

TurboGears follows the Model-View-Controller paradigm (a.k.a. “MVC”), as do
most modern web frameworks like Rails, Django, Struts, etc.

Taking a look at the http://127.0.0.1:8080/about page is greatly suggested to
get an overview of your newly quickstarted project and how TurboGears2
works.

If you take a look at the code that quickstart created, you’ll see everything
necessary to get up and running. Here, we’ll look at the two files directly
involved in displaying this welcome page.

Controller Code

Wiki-20/wiki20/controllers/root.py (see below) is the code that causes the
welcome page to be produced. After the imports the first line of code creates
our main controller class by inheriting from TurboGears’BaseController:

class RootController(BaseController):

The TurboGears 2 controller is a simple object publishing system; you write
controller methods and @expose() them to the web. In our case, there’s a
single controller method called index. As you might guess, this name is not
accidental; this becomes the default page you’ll get if you go to this URL
without specifying a particular destination, just like you’ll end up

http://127.0.0.1:8080/
http://en.wikipedia.org/wiki/Model-view-controller
http://127.0.0.1:8080/about

at index.html on an ordinary web server if you don’t give a specific file name.
You’ll also go to this page if you explicitly name it,
with http://localhost:8080/index. We’ll see other controller methods later in
the tutorial so this naming system will become clear.

The @expose() decorator tells TurboGears which template to use to render the
page. Our @expose() specifies:

@expose('wiki20.templates.index')

This gives TurboGears the template to use, including the path information
(the .html extension is implied). We’ll look at this file shortly.

Each controller method returns a dictionary, as you can see at the end of
the index method. TG takes the key:value pairs in this dictionary and turns
them into local variables that can be used in the template.

from tg import expose, flash, require, url, request, redirect

#Skipping some imports here...

class RootController(BaseController):

 secc = SecureController()

 admin = AdminController(model, DBSession, config_type=TGAdminConfig)

 error = ErrorController()

 def _before(self, *args, **kw):

 tmpl_context.project_name = "Wiki 20"

 @expose('wiki20.templates.index')

 def index(self):

 """Handle the front-page."""

 return dict(page='index')

 #more controller methods from here on...

Displaying The Page

Wiki-20/wiki20/templates/index.html is the template specified by
the @expose() decorator, so it formats what you view on the welcome screen.
Look at the file; you’ll see that it’s standard XHTML with some simple

namespaced attributes. This makes it very designer-friendly, and well-behaved
design tools will respect all the Genshi attributes and tags. You can even open
it directly in your browser.

Genshi directives are elements and/or attributes in the template that are
usually prefixed with py:. They can affect how the template is rendered in a
number of ways: Genshi provides directives for conditionals and looping,
among others. We’ll see some simple Genshi directives in the sections
on Editing pages and Adding views.

The following is the content of a newly quickstarted TurboGears2 project at 2.2
release time:

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:py="http://genshi.edgewall.org/"

 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>

 <title>Welcome to TurboGears 2.2, standing on the shoulders of giants, since

2007</title>

</head>

<body>

 <div class="row">

 <div class="span8 hidden-phone hidden-tablet">

 <div class="hero-unit">

 <h1>Welcome to TurboGears 2.2</h1>

 <p>If you see this page it means your installation was successful!</p>

 <p>TurboGears 2 is rapid web application development toolkit designed to

make your life easier.</p>

 <p>

 <a class="btn btn-primary btn-large" href="http://www.turbogears.org"

target="_blank">

 ${h.icon('book', True)} Learn more

 </p>

 </div>

 </div>

 <div class="span4">

 <a class="btn btn-small"

href="http://www.turbogears.org/2.2/docs/">${h.icon('book')} TG2 Documents

 new

http://genshi.edgewall.org/wiki/Documentation/xml-templates.html
http://turbogears.readthedocs.org/en/latest/main/wiki20.html#editing-pages
http://turbogears.readthedocs.org/en/latest/main/wiki20.html#adding-views

 Read the Getting Started section

 <a class="btn btn-small"

href="http://www.turbogears.org/book/">${h.icon('book')} TG2 Book

 Work in progress TurboGears2 book

 <a class="btn btn-small"

href="http://groups.google.com/group/turbogears">${h.icon('comment')} Join the

Mail List

 for general TG use/topics

 </div>

 </div>

 <div class="row">

 <div class="span4">

 <h3>Code your data model</h3>

 <p> Design your data <code>model</code>, Create the database, and Add some

bootstrap data.</p>

 </div>

 <div class="span4">

 <h3>Design your URL architecture</h3>

 <p> Decide your URLs, Program your <code>controller</code> methods, Design

your

 <code>templates</code>, and place some static files (CSS and/or Javascript).

</p>

 </div>

 <div class="span4">

 <h3>Distribute your app</h3>

 <p> Test your source, Generate project documents, Build a distribution.</p>

 </div>

 </div>

 <div class="notice"> Thank you for choosing TurboGears.</div>

</body>

</html>

Wiki Model

quickstart produced a directory for our model in Wiki-20/wiki20/model/. This
directory contains an __init__.py file, which makes that directory name into a
python module (so you can use import model).

Since a wiki is basically a linked collection of pages, we’ll define a Page class
as the name of our model.

Create a new file called Wiki-20/wiki20/model/page.py:

from sqlalchemy import *

from sqlalchemy.orm import mapper, relation

from sqlalchemy import Table, ForeignKey, Column

from sqlalchemy.types import Integer, Text

from wiki20.model import DeclarativeBase, metadata, DBSession

class Page(DeclarativeBase):

 __tablename__ = 'page'

 id = Column(Integer, primary_key=True)

 pagename = Column(Text, unique=True)

 data = Column(Text)

Now to let TurboGears know that our model exists we must make it available
inside the Wiki-20/wiki20/model/__init__.py file just by importing it at the end:

Import your model modules here.

from wiki20.model.auth import User, Group, Permission

from wiki20.model.wiki import Page

Warning

It’s very important that this line is at the end because Page requires the rest
of the model to be initialized before it can be imported:

Initializing The Tables

Now that our model is recognized by TurboGears we must create the table that
it is going to use to store its data. By default TurboGears will automatically
create tables for each model it is aware of, this is performed during the
application setup phase.

The setup phase is managed by the Wiki-20/wiki20/websetup python module,
we are just going to add to``websetup/boostrap.py`` the lines required to
create a FrontPage page for our wiki, so it doesn’t start empty.

We need to update the file to create our FrontPage data just before
the DBSession.flush() command by adding:

page = model.Page(pagename="FrontPage", data="initial data")

model.DBSession.add(page)

You should end up having a try:except: block that should look like:

def bootstrap(command, conf, vars):

 #Some comments and setup here...

 try:

 #Users and groups get created here...

 model.DBSession.add(u1)

 page = model.Page(pagename="FrontPage", data="initial data")

 model.DBSession.add(page)

 model.DBSession.flush()

 transaction.commit()

 except IntegrityError:

 #Some Error handling here...

The transaction.commit() call involves the transaction manager used by
TurboGears2 which helps us to support cross database transactions, as well
as transactions in non relational databases.

Now to actually create our table and our FrontPage we simply need to run
the paster setup-app command where your application configuration file is
available (usually the root of the project):

(tg22env)$ paster setup-app development.ini

Running setup_app() from wiki20.websetup

Creating tables

A file named Wiki-20/devdata.db should be created which contains
your sqlite database. For other database systems refer to
the sqlalchemy.url line inside your configuration file.

Adding Controllers

Controllers are the code that figures out which page to display, what data to
grab from the model, how to process it, and finally hands off that processed
data to a template.

quickstart has already created some basic controller code for us
at Wiki-20/wiki20/controllers/root.py.

First, we must import the Page class from our model. At the end of
the import block, add this line:

from wiki20.model.page import Page

Now we will change the template used to present the data, by changing
the @expose('wiki20.templates.index') line to:

@expose('wiki20.templates.page')

This requires us to create a new template named page.html in
the wiki20/templates directory; we’ll do this in the next section.

Now we must specify which page we want to see. To do this, add a parameter
to the index() method. Change the line after the @expose decorator to:

def index(self, pagename="FrontPage"):

This tells the index() method to accept a parameter called pagename, with a
default value of "FrontPage".

Now let’s get that page from our data model. Put this line in the body of index:

page = DBSession.query(Page).filter_by(pagename=pagename).one()

This line asks the SQLAlchemy database session object to run a query for
records with a pagename column equal to the value of the pagename parameter
passed to our controller method. The .one() method assures that there is only
one returned result; normally a .query call returns a list of matching objects.
We only want one page, so we use .one().

Finally, we need to return a dictionary containing the page we just looked up.
When we say:

return dict(wikipage=page)

The returned dict will create a template variable called wikipage that will
evaluate to the page object that we looked it up.

Your index controller method should end up looking like:

from tg import expose, flash, require, url, request, redirect

#More imports here...

from wiki20.model.page import Page

class RootController(BaseController):

 secc = SecureController()

 admin = AdminController(model, DBSession, config_type=TGAdminConfig)

 error = ErrorController()

 def _before(self, *args, **kw):

 tmpl_context.project_name = "Wiki 20"

 @expose('wiki20.templates.page')

 def index(self, pagename="FrontPage"):

 page = DBSession.query(Page).filter_by(pagename=pagename).one()

 return dict(wikipage=page)

 #more controller methods from here on...

Now our index() method fetches a record from the database (creating an
instance of our mapped Page class along the way), and returns it to the
template within a dictionary.

Adding Views (Templates)

quickstart also created some templates for us in
the Wiki-20/wiki20/templates directory: master.html and index.html. Back in
our simple controller, we used @expose() to hand off a dictionary of data to a
template called 'wiki20.templates.index', which corresponds
to Wiki-20/wiki20/templates/index.html.

Take a look at the following line in index.html:

<xi:include href="master.html" />

This tells the index template to include the master template. Using includes
lets you easily maintain a cohesive look and feel throughout your site by
having each page include a common master template.

Copy the contents of index.html into a new file called page.html. Now modify it
for our purposes:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:py="http://genshi.edgewall.org/"

 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>

 <meta content="text/html; charset=UTF-8" http-equiv="content-type"

py:replace="''"/>

 <title>${wikipage.pagename} - The TurboGears 2 Wiki</title>

</head>

<body>

 <div class="main_content">

 <div style="float:right; width: 10em;"> Viewing

 Page Name Goes Here

 You can return to the FrontPage.

 </div>

 <div py:replace="wikipage.data">Page text goes here.</div>

 <div>

 Edit this page

 </div>

 </div>

</body>

</html>

This is a basic XHTML page with three substitutions:

1. In the <title> tag, we substitute the name of the page, using
the pagename value of page. (Remember, wikipage is an instance of our
mapped Page class, which was passed in a dictionary by our controller.):

<title>${wikipage.pagename} - The TurboGears 2 Wiki</title>

2. In the second <div> element, we substitute the page name again with
Genshi’s py:replace:

Page Name Goes Here

3. In the third <div>, we put in the contents of our``wikipage``:

<div py:replace="wikipage.data">Page text goes here.</div>

When you refresh the output web page you should see “initial data” displayed
on the page.

Note

py.replace replaces the entire tag (including start and end tags) with the
value of the variable provided.

Editing pages

One of the fundamental features of a wiki is the ability to edit the page just by
clicking “Edit This Page,” so we’ll create a template for editing. First, make a
copy of page.html:

cd wiki20/templates

cp page.html edit.html

We need to replace the content with an editing form and ensure people know
this is an editing page. Here are the changes for edit.html.

1. Change the title in the header to reflect that we are editing the page:

http://genshi.edgewall.org/wiki/Documentation/xml-templates.html#id8

2. <head>

3. <meta content="text/html; charset=UTF-8"

http-equiv="content-type" py:replace="''"/>

4. <title>Editing: ${wikipage.pagename}</title>

5. </head>

6. Change the div that displays the page:

7. <div py:replace="wikipage.data">Page text goes here.</div>

with a div that contains a standard HTML form:

<div>

 <form action="/save" method="post">

 <input type="hidden" name="pagename"

value="${wikipage.pagename}"/>

 <textarea name="data" py:content="wikipage.data" rows="10"

cols="60"/>

 <input type="submit" name="submit" value="Save"/>

 </form>

</div>

Now that we have our view, we need to update our controller in order to display
the form and handle the form submission. For displaying the form, we’ll add
an edit method to our controller in Wiki-20/wiki20/controllers/root.py:

from tg import expose, flash, require, url, request, redirect

#More imports here...

from wiki20.model.page import Page

class RootController(BaseController):

 secc = SecureController()

 admin = AdminController(model, DBSession, config_type=TGAdminConfig)

 error = ErrorController()

 def _before(self, *args, **kw):

 tmpl_context.project_name = "Wiki 20"

 @expose('wiki20.templates.page')

 def index(self, pagename="FrontPage"):

 page = DBSession.query(Page).filter_by(pagename=pagename).one()

 return dict(wikipage=page)

 @expose(template="wiki20.templates.edit")

 def edit(self, pagename):

 page = DBSession.query(Page).filter_by(pagename=pagename).one()

 return dict(wikipage=page)

 #more controller methods from here on...

For now, the new method is identical to the index method; the only difference
is that the resulting dictionary is handed to the edit template. To see it work,
go to http://localhost:8080/edit/FrontPage . However, this only works because
FrontPage already exists in our database; if you try to edit a new page with a
different name it will fail, which we’ll fix in a later section.

Don’t click that save button yet! We still need to write that method.

Saving Our Edits

When we displayed our wiki’s edit form in the last section, the
form’s action was /save. So, we need to make a method called save in the
Root class of our controller.

However, we’re also going to make another important change.
Our index method is only called when you either go to / or /index. If you
change the index method to the special method _default, then _defaultwill be
automatically called whenever nothing else matches. _default will take the
rest of the URL and turn it into positional parameters. This will cause the wiki to
become the default when possible.

Here’s our new version of root.py which includes both _default and save:

from tg import expose, flash, require, url, request, redirect

#More imports here...

from wiki20.model.page import Page

class RootController(BaseController):

 secc = SecureController()

http://localhost:8080/edit/FrontPage

 admin = AdminController(model, DBSession, config_type=TGAdminConfig)

 error = ErrorController()

 def _before(self, *args, **kw):

 tmpl_context.project_name = "Wiki 20"

 @expose('wiki20.templates.page')

 def _default(self, pagename="FrontPage"):

 """Handle the front-page."""

 page = DBSession.query(Page).filter_by(pagename=pagename).one()

 return dict(wikipage=page)

 @expose(template="wiki20.templates.edit")

 def edit(self, pagename):

 page = DBSession.query(Page).filter_by(pagename=pagename).one()

 return dict(wikipage=page)

 @expose()

 def save(self, pagename, data, submit):

 page = DBSession.query(Page).filter_by(pagename=pagename).one()

 page.data = data

 redirect("/" + pagename)

 #more controller methods from here on...

Unlike the previous methods we’ve made, save just uses a
plain @expose() without any template specified. That’s because we’re only
redirecting the user back to the viewing page.

Although the page.data = data statement tells SQLAlchemy that you intend
to store the page data in the database, you would usually need to flush the
SQLAlchemy Unit of Work and commit the currently running transaction, those
are operations that TurboGears2 transaction management will automatically
do for us.

You don’t have to do anything to use this transaction management system, it
should just work. So, you can now make changes and save the page we were
editing, just like a real wiki.

What About WikiWords?

Our wiki doesn’t yet have a way to link pages. A typical wiki will automatically
create links for WikiWords when it finds them (WikiWords have also been
described as WordsSmashedTogether). This sounds like a job for a regular
expression.

Here’s the new version of our RootController._default method, which will be
explained afterwards:

from tg import expose, flash, require, url, request, redirect

#More imports here...

from wiki20.model.page import Page

import re

from docutils.core import publish_parts

wikiwords = re.compile(r"\b([A-Z]\w+[A-Z]+\w+)")

class RootController(BaseController):

 secc = SecureController()

 admin = AdminController(model, DBSession, config_type=TGAdminConfig)

 error = ErrorController()

 def _before(self, *args, **kw):

 tmpl_context.project_name = "Wiki 20"

 @expose('wiki20.templates.page')

 def _default(self, pagename="FrontPage"):

 page = DBSession.query(Page).filter_by(pagename=pagename).one()

 content = publish_parts(page.data, writer_name="html")["html_body"]

 root = url('/')

 content = wikiwords.sub(r'\1' % root, content)

 return dict(content=content, wikipage=page)

 @expose(template="wiki20.templates.edit")

 def edit(self, pagename):

 page = DBSession.query(Page).filter_by(pagename=pagename).one()

 return dict(wikipage=page)

 @expose()

 def save(self, pagename, data, submit):

 page = DBSession.query(Page).filter_by(pagename=pagename).one()

 page.data = data

 redirect("/" + pagename)

 #more controller methods from here on...

We need some additional imports, including re for regular expressions and a
method called publish_parts from docutils.

A WikiWord is a word that starts with an uppercase letter, has a collection of
lowercase letters and numbers followed by another uppercase letter and more
letters and numbers. The wikiwords regular expression describes a WikiWord.

In _default, the new lines begin with the use of publish_parts, which is a utility
that takes string input and returns a dictionary of document parts after
performing conversions; in our case, the conversion is from Restructured Text
to HTML. The input (page.data) is in Restructured Text format, and the output
format (specified by writer_name="html") is in HTML. Selecting
the fragment part produces the document without the document title, subtitle,
docinfo, header, and footer.

You can configure TurboGears so that it doesn’t live at the root of a site, so
you can combine multiple TurboGears apps on a single server.
Using tg.url() creates relative links, so that your links will continue to work
regardless of how many apps you’re running.

The next line rewrites the content by finding any WikiWords and substituting
hyperlinks for those WikiWords. That way when you click on a WikiWord, it will
take you to that page. The r'string' means ‘raw string’, one that turns off
escaping, which is mostly used in regular expression strings to prevent you
from having to double escape slashes. The substitution may look a bit weird,
but is more understandable if you recognize that the %s gets substituted
with root, then the substitution is done which replaces the \1 with the string
matching the regex.

Note that _default() is now returning a dict containing an additional
key-value pair: content=content. This will not
break wiki20.templates.page because that page is only looking for page in the
dictionary, however if we want to do something interesting with the new
key-value pair we’ll need to edit wiki20.templates.page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:py="http://genshi.edgewall.org/"

 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>

 <meta content="text/html; charset=UTF-8" http-equiv="content-type"

py:replace="''"/>

 <title>${wikipage.pagename} - The TurboGears 2 Wiki</title>

</head>

<body>

 <div class="main_content">

 <div style="float:right; width: 10em;"> Viewing

 Page Name Goes Here

 You can return to the FrontPage.

 </div>

 <div py:replace="Markup(content)">Formatted content goes here.</div>

 <div>

 Edit this page

 </div>

 </div>

</body>

</html>

Since content comes through as XML, we can strip it off using
the Markup() function to produce plain text (try removing the function call to see
what happens).

To test the new version of the system, edit the data in your front page to
include a WikiWord. When the page is displayed, you’ll see that it’s now a link.
You probably won’t be surprised to find that clicking that link produces an error.

Hey, Where’s The Page?

What if a Wiki page doesn’t exist? We’ll take a simple approach: if the page
doesn’t exist, you get an edit page to use to create it.

In the _default method, we’ll check to see if the page exists.

If it doesn’t, we’ll redirect to a new notfound method. We’ll add this method
after the _default method and before the edit method.

Here are the new notfound and the updated _default methods for
our RootController class:

@expose('wiki20.templates.page')

def _default(self, pagename="FrontPage"):

 try:

 page = DBSession.query(Page).filter_by(pagename=pagename).one()

 except InvalidRequestError:

 raise redirect("notfound", pagename=pagename)

 content = publish_parts(page.data, writer_name="html")["html_body"]

 root = url('/')

 content = wikiwords.sub(r'\1' % root, content)

 return dict(content=content, wikipage=page)

@expose("wiki20.templates.edit")

def notfound(self, pagename):

 page = Page(pagename=pagename, data="")

 DBSession.add(page)

 return dict(wikipage=page)

In the _default code we now first try to get the page and then deal with the
exception by redirecting to a method that will make a new page.

As for the notfound method, the first two lines of the method add a row to the
page table. From there, the path is exactly the same it would be for
our edit method.

With these changes in place, we have a fully functional wiki. Give it a try! You
should be able to create new pages now.

Adding A Page List

Most wikis have a feature that lets you view an index of the pages. To add one,
we’ll start with a new template, pagelist.html. We’ll copy page.html so that we
don’t have to write the boilerplate.

cd wiki20/templates

cp page.html pagelist.html

After editing, our pagelist.html looks like:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:py="http://genshi.edgewall.org/"

 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>

 <meta content="text/html; charset=UTF-8" http-equiv="content-type"

py:replace="''"/>

 <title>Page Listing - The TurboGears 2 Wiki</title>

</head>

<body>

 <div class="main_content">

 <h1>All Pages</h1>

 <li py:for="pagename in pages">

 <a href="${tg.url('/' + pagename)}"

 py:content="pagename">

 Page Name Here.

 Return to the FrontPage.

 </div>

</body>

</html>

The highlighted section represents the Genshi code of interest. You can guess
that the py:for is a python for loop, modified to fit into Genshi’s XML. It
iterates through each of the pages (which we’ll send in via the controller, using
a modification you’ll see next). For each one, Page Name Here is replaced
by pagename, as is the URL. You can learn more about the Genshi templating
engine at their site.

We must also modify the RootController class to implement pagelist and to
create and pass pages to our template:

http://genshi.edgewall.org/wiki/Documentation/templates.html
http://genshi.edgewall.org/wiki/Documentation/templates.html

@expose("wiki20.templates.pagelist")

def pagelist(self):

 pages = [page.pagename for page in

DBSession.query(Page).order_by(Page.pagename)]

 return dict(pages=pages)

Here, we select all of the Page objects from the database, and order them by
pagename.

We can also modify page.html so that the link to the page list is available on
every page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xmlns:py="http://genshi.edgewall.org/"

 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="master.html" />

<head>

 <meta content="text/html; charset=UTF-8" http-equiv="content-type"

py:replace="''"/>

 <title>${wikipage.pagename} - The TurboGears 2 Wiki</title>

</head>

<body>

 <div class="main_content">

 <div style="float:right; width: 10em;"> Viewing

 Page Name Goes Here

 You can return to the FrontPage.

 </div>

 <div py:replace="Markup(content)">Formatted content goes here.</div>

 <div>

 Edit this page

 View the page list

 </div>

 </div>

</body>

</html>

You can see your pagelist by clicking the link on a page or by going directly
to http://localhost:8080/pagelist .

Further Exploration

Now that you have a working Wiki, there are a number of further places to
explore:

1. You can add JSON support via jQuery
2. You can learn more about the Genshi templating engine.
3. You can learn more about the SQLAlchemy ORM.

Todo

Add link to help show how to add jQuery support

If you had any problems with this tutorial, or have ideas on how to make it
better, please let us know on the mailing list! Suggestions are almost always
incorporated.

http://localhost:8080/pagelist
http://genshi.edgewall.org/wiki/Documentation/templates.html
http://www.sqlalchemy.org/
http://groups.google.com/group/turbogears

